THE CONSOL/ALLEGHENY PILOT PLANT STUDY OF LOW-TEMPERATURE MERCURY CAPTURE WITH AN ELECTROSTATIC PRECIPITATOR

R. A. Winschel, M. L. Fenger

CONSOLENERGY

CONSOL Energy Inc.

K. H. Payette
Allegheny Energy Supply Co., LLC

DOE/NETL Mercury Control Technology R&D Program Review Meeting,
Pittsburgh, July 14, 2004

CONCEPT

- Absorb Hg on particulate by cooling flue gas to 225-240 °F with air heater or water spray
- Collect particulate with ESP to remove Hg
- Protect against acid corrosion by introducing Mg(OH)₂ into flue gas upstream of heater

POTENTIAL BENEFITS OF TECHNOLOGY TO BE EXAMINED

- 70-90% Hg removal targeted
- Projected cost (\$/Ib Hg) is order of magnitude lower than carbon injection
- Suitable for retrofit or new plants
- Potentially suitable for the full range of coal types
- Effective SO₃ reduction
 - ► Visible plume mitigation
 - ▶ TRI reduction
 - ► SCR/SNCR benefits
 - ► Secondary fine particulate reduction
- Potential to improve heat rate by 2%
 - ▶2% reduction in NO_x, SO₂, CO, particulate and CO₂
 - ▶~ \$600,000/y fuel cost savings for 600 MW plant

HOST PLANT Allegheny Energy Mitchell Station

- Courtney, PA
- 288 MW Unit 3
- In service 1963
- Thiosorbic lime wet FGD, ESP, no SCR
- Fired with eastern bituminous coal
 S 3.0 4.8% Ash 9.3 15%
 CI 0.05 0.09% Hg 0.09 0.13 ppm

^{*}Analyses on dry basis, except Hg as determined

ALLEGHENY MITCHELL STATION

PILOT PLANT PROCESS SCHEMATIC

PILOT AIR HEATER

PILOT ESP

EXPERIMENTAL PLAN

- Max. flue gas flowrate: 16,500 lb/h (1.7 MW)
- Mg/SO₃ molar ratio: 2/1 4/1
- Gas temperature at ESP inlet: 220 315 °F
- Water spray cooling: on/off
- Gas sampling for Hg, particulate, SO₂, SO₃
- Speciate Hg at inlet/outlet of air heater and ESP
- Evaluate air heater and ESP performance and corrosion
- Evaluate stability of captured Hg

EFFECTIVENESS OF Mg(OH)₂ INJECTION FOR SO₃ CONTROL

	SO ₃ Concentration, ppmv (Acid Dew point, °F) at Location			
Mg:SO ₃ Mole Ratio	Before Mg Injection	After Mg Injection, Before Air Heater	Air Heater Exhaust	
None	12.5 (274)	-	2.1 (237)	
1.9/1	31.4 (287)	6.8 (256)	1.2 (230)	
4.0/1	32.5 (288)	1.8 (236)	0.7 (222)	

MERCURY CAPTURE BY ESP

Test	Mg:SO ₃ Mole Ratio	Temp., °F AH Exhaust	Temp., °F ESP Inlet	Hg Capture by ESP, mass % (each test)	Hg Capture by ESP, mass % avg. ± std. dev. (best values)
Baseline	0/1	320	290	9* / 14 / 39	26 ± 18
Mg(OH) ₂ , AH Cooling	1.9/1	250	235	40 / 31 / 29	34 ± 6
Mg(OH) ₂ , AH Cooling	3.5/1	234	220	48 / 35 / 83*	42 ± 9
Mg(OH) ₂ , WS Cooling	3.4/1	312	240	17* / 48 / 50	49 ± 1

^{*}Poor/no Hg mass balance, not in average

LOSS OF MERCURY ACROSS AIR HEATER

- Two tests at baseline conditions: no Mg(OH)₂, 315°F
- 39% and 12% mercury lost across air heater
- We presume it recycles with heated air, similarly to SO₃

MERCURY IN FLYASH

MERCURY vs CARBON IN FLYASH

HG SPECIATION AT BASELINE OPERATING CONDITIONS

No Mg(OH)₂, 290°F (1/29/04)

	Mass Flow Rates		
	ESP inlet	ESP outlet	% Change
Hg°	0.55	0.70	27
Hg ⁺⁺	2.2	2. 7	19
Hg ^{part}	1.1	0.0	-100
Hg ^{tot}	3.9	3.4	-13
Hg in flyash	-	0.99	NA
Sum	3.9	4.4	12

HG SPECIATION PROBLEMS AT OPERATING CONDITIONS

 $3.5/1 \text{ Mg}(OH)_2$, AH to $220^{\circ}\text{F} (3/24/04)$

	Mass Flow Rates		
	ESP Inlet	ESP Outlet	% Change
Hgº	0.16	0.74	363
Hg ⁺⁺	0.68	1.6	131
Hg ^{part}	3.6	0.02	-99
Hg ^{tot}	4.5	2.3	-48
Hg in flyash	-	1.5	NA
Sum	4.5	3.8	-15

MERCURY SPECIATION AT ESP OUTLET

PRINCIPAL INTERIM CONCLUSIONS

- Mg(OH)₂ slurry injection is effective for removal of SO₃
- Mercury removal sensitive to temperature
- Mercury removal may be sensitive to carbon content of fly ash
- Baseline conditions give about 25% mercury removal
- Near 50% ESP mercury removal demonstrated with cooling via air heater or water spray
- Emissions of elemental mercury are about the same at operating conditions as at baseline conditions

ADDITIONAL INTERIM CONCLUSIONS

- Ontario Hydro method appears to suffer problems with high-dust streams at temperatures of ≤250°F
- Some mercury lost in air heater; we presume it recycles with heated air, similarly to SO₃
- No increase in pilot air heater ΔP after 84 h total operation with sorbent injection
- Pilot ESP has performed satisfactorily with Mg(OH)₂ injection at reduced temperature

PROJECT PLANS AS OF JULY 14, 2004

- Long-term testing rest of 2004
- Evaluation of air heater and ESP performance and corrosion
- Evaluation of mercury stability in flyash
- Project completion 3/05

ACKNOWLEDGEMENT

- US DOE, NETL, CA No. DE-FC26-01NT41181 (Lynn Brickett)
- Alstom Power, Inc.
- Environmental Elements Corp.
- Carmeuse Lime, Inc.
- J. A. Withum, J. E. Locke, M. M. Majireck